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ABSTRACT 

We consider a self-adjoint operator  defined by a bidimensional linear 

system. We extend the I sh i i -Pas tur -Kotan i  theory that  Mlows us to 

identify the absolutely continuous spectrum. From here we deduce that  

for almost every E with null Lyapunov exponent  the real projective flow 

admits  absolutely continuous invariant measures with square integrable 

density function. 

1. I n t r o d u c t i o n  

We introduce self-adjoint operators associated to a one-parameter family of 

bidimensional linear systems. Each linear equation induces a continuous flow 

in the projective bundle where we define a product measure in a natural way. 

This article connects two topics with each other, of spectral and ergodic nature 

repectively, which are apparently different. 

We concentrate the attention on the real axis and deduce our conclusions from 

a same result: the limit with imaginary part of the Weyl-Titchmarsh functions. 

From here we derive the absolutely continuous part of the spectral measure. 

For adequate values of the parameter we obtain an invariant measure on the 

projective bundle which is absolutely continuous with respect to the product 

measure. 
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In order to make this paper reasonably self-contained, we briefly describe some 

notation and results more or less standard in this theory. 

Let us consider the real linear system 

co(t) -ao( t )  z2 

whose matrix of coefficients is uniformly continuous, bounded and with trace 

zero. 

Let f~ be the hull of So, that is ~2 = cls{So,t(s) = So(t + s)l t E R} in 

the topology of the uniform convergence on the compact sets. Clearly f~ C 

C(R, sl(2, R)) and we represent by ~ E f~ any of its elements. The translation 

R x f~ ~ f/, (t, ~(s)) --* ~(t + s) defines a flow ~ on f/. Let S: f~ ~ sl(2, R) be 

the operator which takes ~ to ~(0). Taking ~ = So we obtain S(~t) = So(t) which 

indicates that  So can be recuperated evaluating S along a trajectory. In this way 

So is extended to a function S E C(~2, sl(2, R)) which leads us to consider the 

family of linear systems 

(2) z'= (a(~t)c(~t) -a(~t)b(~t) )z=S(~t)z 

where (1) is included. 

Let us suppose that the flow (~, E) is minimal, then the system (1) is often 

called recurrent. We fix an ergodic measure mo for all that follows and will denote 

by Ao the complection of the a-algebra of Borel sets with respect to mo. The 

symbol r will stand for the Lebesgue measure on R. 

The equations (2) induce a skew-product flow in the linear bundle Vc = ~ • 

C 2 (VR = ~ • R2). It takes (~,z0)- t to (~t,zt(~,zo)) where zt(~,Zo) verifies the 

equation defined by (2) along the trajectory that passes through ~ with the initial 

data z0(~, z0) = z0. By linearity on the fibres the application H: Vc --* Kc = 

~2 x PI(C), (~, z) --+ (~, z2/zl)  transports this flow to the projective bundle. The 

symbol r will represent the flow application in any invariant subset of Kc that 

is considered. 

As usual, PI(C) represents the space of complex lines through the origin in 

C 2. Analogously PI(R) represents the space of real lines through the origin in 

R 2. We can identify p I ( c )  with the sphere of Riemann and see PI(R) as a 

great circle of S 2. We can also identify P~ (C) with the extended complex plane 

(2 = CU {oo} by means of the stereographic projection. Then PI(R) = RU {cr 
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Taking the complex coordinate Z = z2/zl in (3) we obtain the Riccati equations 

(3) Z'  = c(~,) - 2a(~t)Z - b(~t)Z 2 . 

Let Zt(~, Z) be the solution of the equation (3) with the initial data  Zo(~, Z) 

= Z. Then ~t(~, Z) = (~t, Zt(~, Z)) defines the equation of the flow on Kc.  Let 

us denote by r2 the normalized Lebesgue measure on S 2 and by m2 = m o  | r2 
the product measure on Kc.  We shall assume, unless otherwise indicated, all the 

invariant measures to be positive and normalized. The set A/l~,mo(Kc) includes 

the ergodic measures on Kc  which project into mo. 

It is obvious that  KR = f~ • PI(R) is a closed and invariant subset of Kc, 
thus we can consider (I) acting on KR. We can identify PI(R)  with the quotient 

space R / r Z .  Writing the real solutions of (3) in polar symplectic coordinates 

= cot- l (x2/x l ) ,  p = (x~ + x2)/2 we obtain 

qo' = f(~t, ~) = b(~t) cos 2 qo - e(~t) sin 2 ~r + 2a(~t) sin qa cos qo 
(4) 

= ~(b(~t)-c(~t))+a(~t)s in2qo+ ~(b(~t)+c(~t))cos2~, 

o/ 
p' = ~--~(~t, qo)p = (-2a(r  cos2qo + (b(~t) + c(~t)) sin2qa)p. 

Let qat(~,~) be the solution of (4) with initial condition qao(~,qa) = qa. The 

mapping (I)t(~, ~) = (~t, qat(~, ~)) is precisely the restriction of the flow to KR. 

The relation X = cot ~ gives us the change between the systems of coordinates 

that we have introduced. We will denote by rl  the normalized Lebesgue measure 

on PI(R) and by ml = mo| the product measure on KR. The set A/[~,,~o (KR) 

includes the ergodic measures on KR which project into m0. 

We say that a real solution x(t)  of the equation (1) has characteristic exponent 

70 when t --. oo, (resp. t --~ -oo) if limt_-.oo(1/t) In Ix(t)[ = 70, (resp. li---mt--._oo 

( l / t )  In Ix(t) l  = 7o). The maximum characteristic exponent for almost every 

6 12 is called the Lyapunov exponent of (3). In [11] we find the following 

equivalent definition: 

"r = sup { - ~  /K .  ~ d t / l  ~' G "Me,mo(KR) } �9 

In the present paper we investigate the spectral problems for the self-adjoint 

operators 

1 0 [ z ' -  S(~t)z] = Ez 
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defined in the domain 

D = {z I z is absolutely continuous and z, z' E L2(R, C2)} C L2(R,C 2) . 

The spectral classification depends on the behaviour of the solutions for the linear 

systems [ ( 0 
(6) z' = S(~t )  + - E  0 z = S ( ~ t , E ) z  . 

There is a closed set a with spectrum a ( [ { )  = a for every { E ~l. This set is not 

necessarely bounded below and may have a quite complicated form. 

The basic spectral theory for the self-adjoint operators (5) is described in 

Johnson [13] and Johnson-Giachetti [14]. The existence of the spectral measure, 

the relation beetwen resolvent and exponential dichotomy and the behaviour of 

the Floquet exponent on the complex plane and specially on the spectrum are 

essential topics treated in these papers. Besides, they are our starting point. 

We concentrate our attention on the set A of those values of the parameter E 

where the Lyapunov exponent of (6) vanishes and extend the known theory for 

the usual self-adjoint operators defined by a second order differential equation, 

which characterizes the absolutely continuous spectrum. Ishii [10] and Pastur 

[20] proved that  the absolutely continuous part of the spectral measure vanishes 

on the set {E I "y(E) > 0}. For our problem this is a consequence of Proposition 

3.14 of [14]. Kotani [16] shows that such a measure does not degenerate on 

A. These results together identify the absolutely continuous spectrum with the 

essential closure of A. In Section 2 we adapt Kotani's theory to the family of self- 

adjoint operators (5). We make use of classical properties of Herglotz functions 

and our strategy of proof is closer to that contained in Deift-Simon [6] or Simon 

[23]. Even though we follow a known argument line, we detail most of the proofs 

because the conclusions will be essential for us in the next section. 

Section 3 deals with the ergodic structure of the projective flows defined by 

(6). We show that  for almost every E with Lyapunov exponent ^/(E) = 0 the flow 

(KR, ~E) admits an invariant measure/~ equivalent to ml with square integrable 

density function. Moreover if dp  = p d m l  and p = 1 /q  we find that  q takes a 

quadratic expression on the fibers 

q(~, ~0) = A(~) cos 2 ~0 + B(~) sin 2 ~ + 2C(~) sin ~0 cos 

with measurable coefficients A, B, C on the base. This is the type of measure 
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that  we call linear. The ergodic structure of a projective flow with linear invariant 

measures is described in Alonso-Obaya [2]. 

Actually the above theorem was proved in Obaya-Paramio [18] for a second 

order linear equation. Here we give a different proof based on the techniques of [2] 

which associate such measures with the complex ergodic sheets of the projective 

flow. Our argument can be extended to the second order equation and connects 

ergodic relations of [18] with their equivalent of spectral type given in [6], [15] or 

[16]. 
The existence of absolutely continuous invariant measures in the projective 

bundle has important dynamical consequences but cannot be qualified as a trivial 

question. Of course, with bounded solutions there exist invariant measures with 

continuous deL, sity function. However a large class of linear systems is known 

whose projective flow is uniquely ergodic with a unique singular measure. (See 

Novo-Obaya [17].) 

2. Spec t r a l  t h e o r y  

The symbol C+ will stand for the half plane ~z > 0. By Herglotz functions we 

mean every holomorphic function mapping C+ into C+. We start by recalling 

some known results concerning Herglotz functions that will be useful for us in 

what follows. Their proofs can be found in Duren [7]. 

If h is a Herglotz function then its non-tangential limit from the upper-half 

plane h(x) = limz-.x,n.t, h(z) exists for almost every x E R. In particular if I 

is an open interval of R and ~ h(x) = 0 for almost every x E I then h has an 

analytic continuation through I. 

THEOREM 2.1 : The function h: C+ --* C is Herglotz if  and only i f  there exist real 

numbers a, fl with/3 >_ 0 and a positive measure T on R with 1/(1+x 2) E LI(R, T) 

such that 

i?{ h(z) = a + ~z + dv(x). 
or x z l + x  2 

Moreover 

(i) The absolutely continuous part Ta.c. of V has density function Va.c.(X) = 

limE--.0+ ~ h(x + ie)/Tr. 

(ii) The singular part Ts~ng Of T iS concentrated in 

D = {z I l i m s u p ~ h ( x  + ie) = co}. 
E---*O+ 



19o A.I. ALONSO AND R. OBAYA Isr. J. Math. 

We return to the complex projective bundle. The projective flow contains enough 

information to understand the behaviour of the solutions of (2). 

Definition 2.2: Let M be an invariant subset of Kc, ~q: M ~ f~ the projection 

on the base. We say that M is an ergodic  shee t  for the measure mo, if there is 

an invariant subset f~o with mo(~o) = 1 such that  

(i) card (7r~-1(~)) = 1 for every ~ G ~o. 

(ii) The map ~o ~ pl(•), ~ ~ r~-l(~) is A0-measurable. 

If M is an ergodic sheet of (Kc, r then W = I I - I (M)  is a one-dimensional 

invariant subbundle of Vc which intersects for almost every ~ E f~ the fiber 

{~} x C 2 in a complete line through the origin. 

Let us assume that f~0 C ~ is an invariant subset with mo(~0) = 1 and 

M = {(~, Z(~))[ ~ E ~o} is an ergodic sheet. The flow (Kc, ~) possesses an 

ergodic measure v defined by 

/Kc f  dv= / f(~,Z(~))dmo 

for every f E C(Kc) which is concentrated in M, i.e. v(M) = 1, and projects 

into too. 

Let x(t, ~, ~) be the solution of the linear systems (2) along the trajectory 

that  passes through ~ with initial data x2(0, ~, ~) + ixl(O, ~, ~) = exp(i~). Then 

V(t, ~) = (x(t, ~, 7r/2), x(t, ~, 0)) defines the fundamental matrix of the above (2) 

with U(0, ~) = Id. 

Definition 2.3: We say that the equations (2) admit e x p o n e n t i a l  d i c h o t o m y  

if there is a splitting Vc = W+ ~ W_ where W+ and W_ are invariant one- 

dimensional closed subbundles and positive constants C, /3 such that 

(1) liU(t,~)w[[ < Ce -~t for t E R, (~,w) e W+. 

(2) [[U(t,~)w[[ < Ce ~t for t E R, (~,w) E W_. 

Let us consider the family of linear systems (6). Of course the existence or 

nonexistence of exponential dichotomy depends on E and is related to the spectral 

problem for the self-adjoint operators (5). 

Since (f~, E) is a minimal flow then the spectrum of s is independent of ~ E ft. 

Besides, the resolvent can be characterized via exponential dichotomy. (See [14].) 

THEOREM 2.4: The spectrum of the full-line operator s is a closed subset of 

R. Moreover the following facts are equivalent: 
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(i) E E C is in the resolvent of s 
(ii) The linear systems z' = S(~t, E)z  admit exponential dichotomy. 

Now, if E belongs to the resolvent of s and we have the splitting Vc = 

W ff @ W E, then M E = H(W E) = {(~,m+(~,E))  I ~ E fl} define closed ergodic 

sheets. In this context we can say that the Weyl-Titchmarsh functions are a 

consequence of the exponential dichotomy. The functions m+ (~, E) are jointly 

continuous in both variables. (See Sacker-Sell [21].) For every ~ E fl fixed, the 

functions E --~ m+(~, E)  are analytic in the domain ~ E  r 0. (See Johnson [12].) 

Moreover one has that +~m+(~, E)~E > 0 and m+(~, E) = m+(~, E). Thus, for 

each ~ E ~2 we see that +m+(~,  E)  are Herglotz functions on ~ E  > 0 and their 

non-tangential limits from the upper half-plane exist for almost every E0 E R. 

Then we denote by m+(~, E0) = limE--.Eo,n.t, m+(~, E) the value of this limit. 

The spectral theory for the self-adjoint operators (5), described in [13] and 

[14], follows from the same arguments used for the full-line operators defined by 

a second order linear equation in the limit-point case at •  (See Coddington- 

Levinson [5].) 

THEOREM 2.5: Let ~ E ~. There exists a spectral matrix Q~(t) and an unitary 
isomorphism U~: L2(R, C2,r)  ---+ L2(]~,C2,dQ~) which transforms E~ into M, 
being 

M: D~ C L2(R, C2,dQ~) --+ L2(~ C2,dQ~) 
g ~ M(g)(E) = Eg(E) 

the operator of multiplication by E. 
i j  For such ~ E ~ fixed it is known that Q~ = (Q~')i,j=l,2 is a non-decreasing 

Hermitian matrix of bounded variation on every finite interval. Moreover for 

every Borel subset A C R we have 

IdQ~'2(A)I2=- IdQ~'I(A)I 2 <_ IdQ~'I(A)IIdQ~'2(A)I 

and thus we can understand the trace of dQ~ as the spectral measure. In 

particular r = tr dQr increases exactly on the spectrum a. 

The Floquet exponent w(E) = -'~(E) + ia(E) is defined as a complex function 

whose real and imaginary parts are the negative Lyapunov exponent and the 

rotation number respectively. It is an analytic function on ~ E ~ 0 where it 

admits an ergodic representation 

(7) w(E) = + / [ a ( ~ )  + (E + b(~))m+((, E)] dmo 3~ 
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which comes from an extension of :l:p'/2p + iqo' to the entire complex plane. 

Moreover one has 

(8) w'(E) = fn 1 + m_(~, E)m+(~, E) 
m_(~,E) - m+(~,E) dmo. 

Relations (7) and (8) show that w(E) and w'(E) are Herglotz functions on ~E  > 0 

and assure the extension of w(E) to R. On the real axis a(E) is a continuous 

function which increases on the spectrum and is constant on the resolvent. It is 

known that 

(o) = I ~176 
da(x) 

We now return to the Riccati equations (3) and analyze the convergence of 

m• Eo) = limE-,Eo m• E). As a consequence of Fubini's theorem we find 

that for almost every Eo E R the above limits exist almost everywhere in ~2. 

Given a point of convergence Eo E R the set of ~t s with real limit and the set 

of ~ts with complex (but not real) limit are invariant and disjoint and one of 

them defines an invariant subset ~2o with complete measure. Moreover M+ = 

{(~, rn+(~, Eo)) [ ~ E f~o} are measurable ergodic sheets. 

Pastur [20] and Ishii [10] showed, for the usual spectral problem defined by a 

second order linear equation, that the absolutely continuous part of the spectral 

measure vanishes on the set {E[ "r(E) > 0}. For our problem, this derives from 

the following result, stated in [14] for the linear systems (6). (See also [6].) 

PROPOSITION 2.6: Let Eo E ~ with 7(Eo) > O. Then there exist m+(~, Eo) = 

limE--.Eo, ,~.t. m+(~, E) and they belong to R U {c~} for almost every ~ E f~. 

We mention that adapting Kotani's arguments from [16] we can refine the 

previous information when the Lyapunov exponent vanishes. From now on we 

denote A = {E0 E R[ "r(E0) = 0}. Let A+ be the set of these Eo where there 

exist m+(~, E0) = limE-~Eo,,m, m+(~, E) with ~m+(~, Eo) # 0 for almost every 

E ~. We define A_ in a similar way and take A1 = A+ U A_. It follows from 

Proposition 2.6 that A1 C A. 

PROPOSITION 2.7: There is a subset A2 C A1 with r(A - A2) = 0 such 

1 9m+(~ ,  Eo), ~2m+(~ '  Eo) belong that if Eo E A2 then the maps 9m+(~, Eo)' 9m+(~, Eo) 

tO L 1(~, too). 
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Proof'. We remind the reader that for almost every Eo E R the non-tangential 

limits of +m+(~, E) exist for almost every ~ E 12. 

On the other hand, if Eo E R and e > 0 then 

07 . z-~e" 07 (E0 w'(Eo + ie) = -~o(Eo  + ,e) - + ie) . 

If 7(Eo) = 0 then 

-Rw(Eo  + ie) = 7(Eo + ir - 7(So) = 07(E  ~ + ie') 
0e 

with 0 < e' < e. We take Eo E A a point of differentiability of the rotation 

number. We recall the expression (9), now a standard argument of measure 

theory allows to derive 

(10) lim -!Puz(Eo + ie) = lim O.7(Eo + ie) = a'(Eo) < oo. 
e~0+ ~ ~---*0 + Ct~ 

We represent by A2 the subset of A where all the above limits exist. According 

to the previous remarks it is obvious that r (A - A2) = 0. 

When ~ E > 0, the functions m• E) satisfy the differential equation 

Z' = ( - E  + c(~t)) - 2a(~t)Z - (E + b(~t))Z 2 

and taking the imaginary part we obtain 

~3m~ (~t, E) = - ~ E  - 2a(~t)~m+ (~t, E) 

-~E(~2m+(~ t ,  E) - ~32m+((t, E) ) 

- 2 ( ~ E  + b(~t))~m+(~t, E)~m+(~t,  E); 

then 

~m• + ~ E _  ~m• ] = 

-2(a(~t) + ( ~ E  + b(~t))~m+(~t, E) - 9Egm+(~t ,  E)) , 

and in consequence 

1 .IT_ ~3m~(~t,E! dt + ~ E  [ T  1 + [m+(~t,E)l 2 
2--T _ _  T ~ 2T J - T  ~m:l:(~t, E) dt = 

1 I : ( a ( ~ t )  T _ + ( ~ E  + b(~t))~m+(~t, E) - ~E~m•  E)) dr. 
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We take limits as T ~ oc and use the equality (7). It follows from Birkhoff's 

ergodic theorem that 

~E  [ 1 + [m+(~, E)[ 2 
(11) drno ~2~E~ 

Jn I~m+(~, S)l 
This is the extension of a known Kotani's equality for the second order linear 

equation. 

Now we choose E0 E A2 and set E = Eo + ie. We take limits as e tends to 0 

and use the equality (10). It follows Fatou's lemma that 

~ 1  + Im• 2 < lim dmo 
l g m + ( C  Eo)l - ~-..o+ 

- 2 ~ ( E 0  + ie) 

which shows that 

In particular this 

For ~ E  # 0 we 

(12) G(~,E) = 

which is related 

Moreover, if G = 

= 2a'(E0) 

1 + [m=e(L Eo)J 2 
E Ll(~,mo). I~m~(~, Eo)l 

means that ~m+(~, Eo) # 0 for almost every ~ E ~. 

introduce the matrix 

(13) 

1 1 m_(~, E) + m+(~, E) 
m_(~ ,E) -m+(~ ,E)  -2m+(~,E)-m_(~,E)  

lm_(~ ,E)+m+(~ ,E)  m_(~,Z)m+(~,E) 
2 m + ( ~ , E ) - m _ ( ~ , E )  m_(~ ,E) -m+(~ ,E)  

to the Green kernel for the self-adjoint operator (5) at ~. 

(GLJ)iS=I,2 then 

f ?  (-1)~+J ~Q~'J(x) ~G i'j (~, E) = aE ~--- ~ . 
O 0  

For Eo e (R - A) u A2 we understand G((, Eo) = limE--.Eo,n.t. G((, E). 

PROPOSITION 2.8: / lEo  E A2, then 

(i) m+(~, Eo) = m_(~, Eo), 
(ii) RG(~, Eo) = 0, 

for almost every ~ E ~.  

Proof: For ~E  > 0 we consider the functions 

l ( l+[m, (~ ,E ) [  2 l + [ m - ( ~ , E ) l  2)  
II(~,E) = -~ ~m+(~,E) - ~m_(~,E) 

= 9 m_(~, E)(1 + [m+(~, E)I 2) - 9m+(L E)(1 + Im-(~, E)I 2) 
4~ m+(~, E)~m_(( ,  E) 
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and 

1 q- m _  ( ~ , E ) m + ( ~ ,  E )  "~ 
I2(~, E ) =  ~ \ ra--_~-,--~-m+(~, E) ] 

~ m+(~, E)(1 + Im_ (~, E)I 2) - ~ m - ( L  E)(1 + [m+(~, E)I 2) 
[m-(L  E) - m+(L  E)[ 2 

Notice that  0 < I2(~,E) _< I I (~ ,E)  for every ~ E f~, E E C+. First from (11) 

and (8) we have 

-Nw(Eoe + ie) _ ~w'(Eo + ie)= ~ [ I I (~ ,  Eo + ie) - I2((, Eo + ie)] dmo. 

Moreover 

I ~ ~ E 0 + ie) 
- + : + -  (Eo + 

c o f  

with 0 < e' < e. Taking limits when e tends to 0 and using the Fatou lemma we 

get 

and 

11(~, E0) - 12(~, Eo) _> 0 

/ [I~(~, Eo) - 12(~, Eo)] dmo -- o.  

We derive that I1(~, Eo) = I2(~, Eo) almost everywhere which allows to conclude 

that  ~m+(~,E0) = ~m_(~, Eo) and ~m+(~,Eo) = - ~ m _ ( ~ , E 0 )  for almost 

every ~ E f2. This proves the statement (i). By evaluating (12) we immediatly 

obtain (ii). I 

Now, applying Theorem 2.1 in the relation (13) we see that the absolutely 

continuous part Ta.c. of the spectral measure r = tr dQ~ has density function 

(1 -4-Im+ (~, E)I2)/2~r~ m+(~, E). Thus from Proposition 2.7 we conclude 

THEOREM 2.9: The absolutely continuous spectrum of s agrees with the 

essential closure of A for almost every ~ E ft. 

Thus aa.c. = A r = {E E ]~] (re > 0) r[(Eo - e, Eo + e) n A] > 0}. There exists a 

subset B C R with r(B) = 0 such that a,.c. C A U B. Moreover if r(a - A) = 0 

one has the important reflectionless condition NG(~, Eo) = 0 for almost every 

(L E0) ~ f~ x a. 

A careful analysis of the non-tangential limits of the Weyl-Titschmarch func- 

tions on A leads us to state 
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THEOREM 2.10: / f  7(E)  = 0 on an open interval I of R then the spectral 

measure of s is purely absolutely continuous on I for almost every ~ E ~. 

Proof. We see that tr G(~, E) is a Herglotz function whose real part vanishes on 

I. It has an analytic continuation through I with positive imaginary part. Let 

D = {Eo E R[ limsupe__,o+ ~ t r G ( ~ , E o  + i~) = oo}; then D n I = 0 and hence 

as~,g(I) = O. | 

Notice that the above argument also applies to 1/ (m_ (~, E ) - m + ( ~ ,  E)).  Com- 

bining both facts we guarantee the limits m+ (~, Eo) = lim,-.o+,n.t, m+ (~, Eo + ie) 

for every Eo E I. This immediately gives the sequence of inclusions int(A) C 

A 2  C A1  C A. 

3. L i n e a r  i nva r i an t  m e a s u r e s  

Let mo be a fixed ergodic measure on fl, -40 the completion of the a-algebra 

of the Borel sets with respect to too. The symbol ml  = mo | r l  stands for 

the complete product measure on the corresponding a-algebra A1 of f~ x p1 (R). 

Similarly, the symbol m2 = m o  | r2 will denote the complete product measure 

on the corresponding a-algebra A2 of f l x  PI(C).  

Let us consider the linear systems (2) whose real and complex projective flows 

are respectively defined by the equations (4) and (3). It is known that  if the 

flow (KR, (I)) admits an invariant measure which is absolutely continuous with 

respect to ml ,  then (Kc,(I)) admits an invariant measure which is absolutely 

continuous with respect m2. This situation only occurs when the Lyapunov 

exponent vanishes. 

In this section we concentrate our attention on the following remarkable class 

of absolutely continuous invariant measures. 

Definition 3.1: Let # be an invariant measure on KR with d~ = pdml .  We 

say that  # is a l inear  i nva r i an t  m e a s u r e  if there are measurable functions 

A, B, C: fl ~ R and an invariant subset ~o C ~ with mo(f~o) = 1 such that  

p(~, ~p) = 1/q(~, ~p) and 

(14) q(~, ~o) = A(~) cos 2 ~o + B(~) sin 2 ~0 + 2C(~) sin ~o cos 

for every (~, ~0) fi f~o x PI(R).  

From these coefficients A, B, C we introduce the map 

X = (A, B, C)t: fl --* R z. 



Vol. 92, 1995 I N V A R I A N T  M E A S U R E S  F O R  R E C U R R E N T  S Y S T E M S  197 

It is known that there exists an invariant subset fro C f~ with mo(ft0) = 1 such 

that the map Xe: R ~ R 3, t --~ X(~t) is a C 1 map with A(~)B(~) - C2(~) = 1, 

for every ~ E l'to. (See [2].) 

Let S E C(ft, L(R3)). We say that X is a solution along the flow for me of 

the linear systems X' = S(~t)X if there is an invariant subset ~2~ C ft with 

m0(f~)  : 1 such that X'(~t) : S(~t)X(~t) for every (~,t) E f~  x R. 

The above function q is a positive solution of the functional equation 

(15) q(~2t( , ,qa))=q(, ,cp)exp{fo t 00-~f ((I)8(,, ~)) ds}. 

Every function on KR which takes the form (14) is said quadratic on the fibers. 

The quadratic on the fibers solutions of (15) are directly related to the ergodic 

sheets of the projective flows. The following facts are proved in [2]. 

PROPOSITION 3.2: Let us consider the measurable map X = (A, B, C)t: f~ 

R 3. The following statements are equivalent: 

(i) The function 

q(~, ~) = A(~) cos 2 ~ + B(~) sin 2 qa + 2C(~) sin ~a cos ~a 

is a solution of the functional equation (15). 

(ii) X is a solution along the flow of the systems 

( 2a(~t) 0 -2b(~t) ) 
(16) X' = 0 -2a(~t) -2c(~t) X. 

-c(~t)  -b(( t )  0 

The concept of solution along the flow of linear systems associates the 

coefficients A, B, C of q with invariant subsets of the projective flow. 

THEOREM 3.3: Let f~o C f~ be an invariant subset with mo(f~o) = 1. 

(i) I f  M = {(~, X(~) + iY(~)) I ~ E f/0} is a complex ergodic sheet of (Kc, r  

with Y(~) > 0 for every ~ E ~2o and we define 

(y__~l 2X(,) )-1 
p(~,~) = cos2~ + Xz(~) + Y2(~) s i n 2 ~ -  s i n~cos~  

Y(r Y(r 

for every (~, ~) E f~0 x PI(R), then dlt = pdml is a linear invariant measure. 
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(ii) I fMi  = {(~, X~(~)) I f �9 ~2o} i = 1, 2 are two real ergodic sheets o f (Kc ,  ~) 

and we define 

2 2Xl(r  C(~) = X2(~) q- Xl (~)  
A(~) = X i ( ~ ) -  X2(~)' B (~ )=  X-~-- -X-- -~) '  X2(~)--Xl(~) '  

then 

q(f, ~) = A(~) cos 2 qo + B(~) sin 2 ~ + 2C(~) sin qo cos qo 

is a measurable solution of (15). Moreover, A( f )B(~)  - C2(~) = - 1  for 

every ~ �9 f~o. 

Conversely, complex and real ergodic sheets can be recovered from the measur- 

able solutions of the functional equation (15). These solutions contain essential 

information for understanding the topological and measurable structures of the 

complex projective flow. 

For each T > 0 we introduce the function 

:j: } PT(~, qo) = -~f T exp (r qo) ds dr. 

Propositions 2.3 and 2.4 of [18] assert that (KR, q') admits an invariant measure 

equivalent to m: if and only if the limit p(f, qo) = limT-.oo PT(~, ~o) exists and is 

a positive real number for almost every (f, ~) �9 KR. In this case d# = pdm: is 

an invariant measure equivalent to mi.  

The following maps 

tiT: f~ x PI(R) x P:(R) ----* P:(R) 

T t (~, ~1, ~2) ----* ~TTf'_T{~V(,~,qO2)--~(t,~,qO:)}dt 

evaluate the Ll-oscillations of the projective flow on KR. The existence of ab- 

solutely continuous invariant measures has important dynamical consequences. 

We analyze the evolution of the family {dT}T>O along the time. 

PROPOSITION 3.4: Let assume that (KR, ~) admits an invariant measure.equiv- 

alent to m, .  We take p(~, ~) = limT-.oo PT(~, ~0) for almost every (~, ~) 6 KR. 

There is an invariant subset ~0 C ~ with mo(~o) = 1 such that i f  ~ 6 ~0 

then {dT(~,~:,~O2)}r>o uniformly converges on ~1, ~2 E P:(R) when T ~ 00. 

Moreover 

d(~, qOl, ~2) = lim dT(~, qOl, ~2) ---- p(~, ~) dqo. 
T---*oo 1 
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Proof: Let T > 0, it is obvious that PT E C(K~) and fp~(g~)pT((,~)dtP = 1 for 

every ~ E ft. Notice that 

1// 
{t/9(t, ~, q02) -- ~ ( t ,  ~, ~1)} d t  dr(L ~1, ~ )  = ~ 

1 fT f~2 =-~-f -- -- exp{fot ~(r  T J-TJ~ 

ff = PT((,  ~o) a~. 
1 

By ergodicity on the base it is known that there is an invariant subset ~2o c f t  

with mo(ao) = 1 such that if ( E ao then fpl(R)p((,~)d~o = 1 and p((, ~o) = 
limT--.~ PT((, ~0) for almost every ~ E p1 (R). 

Let us fix ( E ft0. We take a measurable subset I C PI(N) and J = P I ( N ) - I .  

It follows from Fatou's lemma that 

~P((,qa)d~<--liTm~f~iPT((,~)dq~ oPflPT((,~)d~ 

< 1 - - l iminf  [ p T ( e , ~ ) d ~  < 1 - [ p ( e , ~ ) d ~  
- -  T ~ o o  J j  J j  

= Jl p(~' ~) d~. 

In particular, when I stands for the closed arc obtained by moving clockwise 

from ~1 to ~2 on PI(R) we have 

ff' d((, ~1, ~2) = lira dT((, ~Ol, ~2) = p((,  ~o) d ~ .  
T ~  t 

We also deduce as a simple consequence of Egorov's theorem the convergence of 

{PT((, ~o)} to p((, ~o) when T ---, c~ in LI(PI(N),  rl)-topology. Even this same 

argument shows the convergence of {PT} to p in t h e / f l  (K e, m l)-topology. 

For ( E a0, if ~1 = 0, ~2 = ~ then a t ( ( ,  0, ~o), d((, 0, ~) are homeomorphisms 

of PI(R) preserving the orientation. Arzela-Ascoli's theorem assures the uniform 

convergence of {dT((,0, ~)}T>0 to d(~,0,~) on PI(R).  Since dT((,~Ol, r = 
dT(~, 0, ~2) -- aT((, 0, ~1) then {aT(~, ~1, q02)}T>0 also converges uniformly on 

~1, ~ when T --* 00. I 

Let us consider the family of functions 
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Propositions 2.3 and 2.4 of [18] assert that (KR, q)) admits an absolutely 

continuous invariant measure with square integrable density function if and only 

if the limit q(~, ~v) = limT_.~ qT(~, ~V) exists and is a positive real number for 

almost every (~, ~) �9 KR. 

In this case, if ~ = fKR(1/q)dml and p = 1/(~q) then p E L2(KR, mi)  and 

d# = pdmi is a linear invariant measure. Moreover it follows from Birkhoff's 

ergodic theorem that 

lim P(@t(~, ~)) /K  Of 
t--oo t - ~ - ~ (~' ~)p(~, ~v) dml = 0 

for almost every (~, ~) E KR. By other hand, the functions x~(t, ~, ~) +x~(t, ~, ~) 

and P(~t(~, (P)) satisfy the same differential equation, which allows us to write 

P(@t(~, ~)) = P(~, ~)[x2(t, ~, ~v) + x22(t, ~, ~v)]. This provides an invariant subset 

~0 C ~ with mo(~20) = 1 with the following size of the solutions 

(17) lim x~(t,~,~v) + x~(t,~,~v) = 0 
t--.or t 

for every ~ E ~2o. 

Let us consider the one-parameter family of linear systems (6). The 

corresponding equation (15) is different for each E, however we take for granted 

this dependence and avoid the parameter on the notation. The following state- 

ment provides a linear invariant measure for almost every E with null Lyapunov 

exponent. 

THEOREM 3.5: Let A1, A2 be the sets obtained in Section 2. Then 

(i) I fEo  ~ A i  then (KR, @Eo) admits a linear inwariant measure. 

(ii) If  E0 E A2 and q is a quadratic on the fibers solution of  (15) then q �9 

LI(KR, ml). 

(iii) I f  Eo E A2 and tt is a linear inwariant measure where d# = pdml then 

p E L2(KR, ml) .  

Proo~ Let E0 E A1. We can suppose that  m+(~, E0) = limE--,Eo,n.t, m+(~, E) 

exists for almost every ~ E ~, otherwise we would consider m_,  and define 

M+ = {(~,m+(~,Eo))l  ~ �9 ~}. The sets M+, M+ are complex ergodic sheets 

which provide, according to Theorem 3.3(i), a linear invariant measure It0, where 



Vol. 92, 1 9 9 5  INVARIANT MEASURES FOR RECURRENT SYSTEMS 201 

d#o = podml. We introduce 

i -~m+ (~, Eo)i 
2~rn+ (~, Eo) 2~m+ (~, Eo) 

C+(~, Eo) = -Nm+(~,  Eo)i Im+(~, Eo)tsi 

2~m+ (~, Eo) 2~m+ (~, E0) 

Ifpo = 1/qo then qo is a quadratic on the fibers function associated to the matrix 

2~G+(~, Eo). This means that if vt(~) = (cos ~v, sin ~) then 

(18) qo(~, ~) = 2vt(~v)~G+(~, Eo)v(~). 

If Eo E Az then the sets M• = {(~, m+(~, Eo)) I ~ E ~2} define two complex 

ergodic sheets with M+ = M: F. From Proposition 2.8 we deduce that G(~, Eo) = 

limE--.Eo,,~.t. G(~, E) and both previous definitions agree on A2. It follows from 

Proposition 2.7 that 

~ 1  dmo < oo 
+ Eo)[ 2 

Eo)l 
Since 

( zr) 1 +tm+(~,Eo)t 2 
qo( ( ,~ )+qo  ~ , ~ +  ~ = 19m+(LEo)l 

for every (~, ~) E KR we obtain that  qo E LI(KR, ml). Moreover 

(19) ]lqoi[1 = / ~  1 + Im• Eo)l 2 dmo. 
Eo)l 

The ergodic components for mo of the flow (Kc, cEo) are described in [2]. We 

know that #o need not be the unique linear invariant measure. If q(~, ~) = 

A(~) cos s ~v + B(~) sin 2 ~v + 2C(~) sin ~ cos ~ is a measurable solution of the equa- 

tion (15) then the function q/qo is invariant under the flow. Besides it is con- 

tinuous on ~ for almost every ~ 6 ~. Let us introduce the functions kl(~) = 

min~ep,(R)(q(~, ~)/qo(~, ~)), k2(~) = max~Epl(R)(q(~, ~v)/qo(~, ~v)). Then kl(~), 

k2(~) are invariant under the flow and hence by ergodicity on the base there 

exists an invariant subset f/o C fl with mo(~o) = 1 and real constants kl, ks 

such that kl(() = kl, k2(~) = k2 for every ~ E flo. Thus we obtain that  

Iq(5, ~)l --- ([k2[ q- [kl[)qo(~, ~) and q E L I(KR, m~). This completes (ii) . 

We next deal with the statement (iii). Let dp = pdm~ be a linear invariant 

measure where p = 1/q and q(~, ~) = A(~) cos 2 ~v+B(~) sin s %v+2C(~) sin ~v cos %v. 

Since 

+ q + g = + 
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we see that A, B E Ll(fl, mo). For ~ E fl0 we introduce 

a(~)= C(~) B(~) ' 

whose positive eigenvalues ~1(~) ~ 1 < A2(~), satisfy A1(~))~2(~) = 1 and Al(~) § 

~2(() = A(() + B((). If vt(~) = (cos ~o, sin~o) then 

= 

In consequence 

AI(~) _< q(~, ~) _< A2(~) _< A(~) + B(~), 

AI(~) _< p(~, qo) <_ A2(() _< A(~) + B(~), 

for every ~ E ~0- This shows that p E L2(KR, ml) and completes the proof of 

the statement. On the other hand 

/Ka p2(~'~)dml <- /f~/p[ 1( R)(A(~)+B(~))p(~'~)drl]dm~ 

hence 

(20)  
I "  

Ilpll~ ~ J (A(~) + B(~)) dmo = 211ql11. 

We recall the linear invariant measure d# = podml, po -- 1/qo, with qo given by 

(18). Notice that the above inequality (20) stablishes a direct relation between 

[]Poll2 and a'(E). | 

We are also in conditions to obtain quadratic on the fibers solutions of the 

functional equation when the Lyapunov exponent is positive. 

PROPOSITION 3.6: Let Eo e R with "Y(Eo) > 0. Ifvt(~)  = (cos~,sin~) and 

(21)  = 

then +q are the unique quadratic on the ~bers solutions of (12) whose coeltJcients 

satisfy A(()B(~) - C2(~) = -1  for almost every ~ 6 ~. 

Proo~ Proposition 5.7 of [2] assures a unique quadratic on the fibers solution 

(except sign) of (12) with A(~)B(~) - C2(~) = -1  for almost every ~ 6 ~. We 

deduce from Theorem 3.3(ii) that it is associated to the matrix 2G(~, Eo). 1 

Formulas (18) and (21) permit the interchange between ergodic and spectral 

relations which appear in the literature. The same kind of expressions can be 
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obtained for the usual spectral problem defined by the second order differential 

equation. 

Definition 3.7: We say that  a map P: ~ --~ SL(2, C) defines a m e a s u r a b l e  

P e r r o n  t r a n s f o r m a t i o n  for m0 if 

(i) P is a measurable map. 

(ii) There is an invariant subset f~0 C ~ with m0(~0) = 1 such that  the map 

Pc: R --* SL(2, C), t --, P((t) is a C l -m ap  for every ( E ~20. 

Notice that  p - i :  ~ __, SL(2, C), ~ ---* p-X(~) is also a measurable Perron 

transformation. We refer to P as an Lv-Perron transformation when the map 

n: f~ ---* [0, cc), ~ ---+ [[P(~)[] + [[p-x([)[] belongs to LP(fl, mo). Obviously this 

definition is irrespective of the norm used on SL(2, C). We say that  P is a strong 

Perron transformation if it is continuous and fl0 = ~'/- Then p - 1  is also a strong 

Perron transformation. 

If the flow (~2, --) is distal and the solutions of (2) are bounded there exists a 

strong Perron transformation which takes the matr ix  S into a skew-symmetric 

one. In fact this is a general result for n-dimensional linear systems. (See [3], [11].) 

Every linear invariant measure gives rise to a measurable Perron transformation 

which preserves the measurable structure. If (KR, 9)  admits  an absolutely con- 

tinuous invariant measure there exists a measurable Perron transformation which 

takes the matr ix  S into a skew-symmetric one. 

We can make this result more precise on A2. We take E0 E A2 and fix a linear 

invariant measure # on K s  where d# = pdml and 

p(~, ~) = (A(~) cos 2 ~ + B(~) sin 2 ~ + 2C(~) sin ~ cos ~ ) -  1. 

It  is known that  the relations B(~) = C2(~)/A(~) + 1/A(~) hold for almost every 

E ft. Hence C2(~)/A(~), 1/A(~) belong to LI (~ ,  m0). h direct application of 

Proposition 3.2 leads to 

PROPOSITION 3.8: Let us fix E0 E A2. The map 

(22) 

P: a SL(2, C) (1) 
---- ,  x/2  0 
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is an L a-Perron transformation. Moreover 

(i) The change of variables w = P(~t)z transforms the systems z' = SEo (~t)z 

into 
0 b(~t) 4- Eo 

A(( t )  ( )w 
- 8 ( 5 )  - Eo 

(23) w '  = 

0 
A (~ )  

for almost every ~ E ~. 

(ii) The MSbius-Perron transformation W -- A(~)Z + C(~) takes the Riccati 

equations Z' = ( - E o  + c(~t)) - 2a(~t)Z - (Eo 4- b(~t))Z 2 into 

W '  - - b ( ~ t )  - Eo (1 + W 2) 

for almost every ~ E ~. 
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